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show that Eq. (2-129) can be expressed as
B = 21lr[ C + log kL — CikL + sin kL (48i 2kL — Si kL)

+ 14 cos kL (C + log Ic% -+ Ci2kL — 2CikL)]
where C = 0.5772 - - - is Euler’s constant.

2-45, If the lmear antenna of Fig. 2-23 is an integral number of half-wavelengths
long, the current will assume the form

1G) = I sink (z + %)

regardles.s of ‘the position of the feed as long as it is not near a current null. Such an
antenna is said to be of resonant length. Show that the radiation field of the antenns is

P cos (— cos 0)
By =

T siné@ n odd
sin (——- cos 0)
Eg = o gikr — N 7/
5in 0 n even

where n = 2L/ is an integer.

2.—46. For an antenna of resonant length (Prob. 2-45), show that the radiation
resistance referred to 7, is

R, = & [C + log 2nr — Ci(2nm)]
where n = 2L/), C = 0.5772, and Ci is as defined in Prob. 2-44. Show that the input
resistance for a loss-free antenna with feed point at z = aX is

_._R'—
sin 2z(a 4+ n/4)

; =

Specialize this result to L = A\/2, @ = 0 (the half-wave dipole) and show that
R; = 73 ohms.

CHAPTER 3

SOME THEOREMS AND CONCEPTS

3-1. The Source Concept. The complex field equations for linear

media are
—VXE=H+M VXH=9E+] (3-1)

where J and M are sources in the most general sense. We have pur-
posely omitted superscripts on J and M because their interpretations
vary from problem to problem. In one problem, they might represent
actual sources, in which case we would call them impressed currents. In
another problem, J might represent a conduction current that we wish to
keep separate from the gE term. In still another problem, M might
represent a magnetic polarization current that we wish to keep separate
from the 4H term, and so on. We can think of J and M as ‘“mathe-
matical sources,” regardless of their physical interpretation.

For our first illustration, let us show how to represent * circuit sources”
in terms of the “field sources” J and M. The current source of circuit
theory is defined as one whose current is independent of the load. In
terms of field concepts it can be pictured as a short filament of impressed
electric current in series with a perfectly conducting wire. This is shown
in Fig. 3-1a. That it has the characteristics of the current source of cir-
cuit theory can be demonstrated as follows. We make the usual circuit
assumption that the displacement current through the surrounding
medium is negligible. It then follows from the conservation of charge
that the current in the leads is equal to the impressed current, inde-
pendent of the load. The field formula for power, Eq. (1-66), reduces to

I I
o + +
Fra. 3-1. Circuit sources
in. terms of impressed
currents. (g) Current L Vv K ) Vv
source; (b) voltage
source.
\—>
(@) ®
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the circuit formula for this source. We have only electric currents ; hence
P, = —[/fE-]"'*dr =—I*[E-al=VI*

The “internal impedance”” of the source is infinite, since a removal of the
impressed current leaves an open circuit.

The voltage source of circuit theory is defined as one whose voltage is
independent of the load. In terms of field concepts it can be pictured
as a small loop of impressed magnetic current encircling a perfectly con-
ducting wire. This is illustrated by Fig. 3-1b. To show that it has the
characteristics of the voltage source of circuit theory, we neglect displace-
ment current and apply the field equation K = — E-dl to a path
coincident with the wire and closing across the terminals. The E is zero
in the wire; so the line integral is merely the terminal voltage, that is,
Ki = —V. The impressed current, and therefore the terminal voltage,
is independent of load. The field formula for power, Eq. (1-66), reduces
in this case to

P, = —[ff H*. M dr = —KigSH*-d1= VI*

which is the usual cireuit formula. The internal impedance of the source
is zero, since a removal of the impressed current leaves a short circuit.

We can use the circuit sources in field problems when the source and
input region are of “circuit dimensions,” that is, of dimensions small
compared to a wavelength. Given a pair of terminals close together,
we can apply the current source of Fig. 3-1a, that is, a short filament of
impressed electric current. Given a conductor of small cross section,
we can apply the voltage source of Fig. 3-1b, that is, a small loop of
impressed magnetic current. As an example of the use of a circuit
source, consider the linear antenna of Fig. 2-23. The geometry of the
physical antenna is two sections of wire separated by a small gap at the
input. To excite the antenna, we can place a current source (a short
filament of electric current) across the gap, which causes a current in the
antenna wire. An exact solution to the problem involves a determination
of the resulting current in the wire. This is difficult to do. Instead, we
approximate the current in the wire, drawing on qualitative and experi-
mental knowledge. We then use this current, plus the current source
across the gap, in the potential integral formula to give us an approxi-
mation to the field.

We shall find much use for the concept of current sheets, considered in
Sec. 1-14. As an example, suppose we have a J, over the cross section
of a rectangular waveguide, as shown in Fig. 3-2. Furthermore, we pos-
tulate that this current should produce only the TE, waveguide mode,

:@h@-ﬁﬂ' s
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F1a. 3-2. A sheet of current in a rectangular waveguide.

which propagates outward from the current sheet. Abstracting from
Table 2-4, we have the wave

E+ = Asin ’Ibﬂ ¢t
Hy+ - _Zé ln% e—'J'BZ ¥4 > O
A fe

Ht = cos —2 g~
nf b

where the constant A specifies the mode amplitude. The —z traveling
wave is of the same form with 8 replaced by —8 and Z, by —Z,. Thus,

E; = Bsin % o

H,,—=—Z§sin%yefﬁz z2<0
4]
Bf. Y
- = =% cos 5= e
foomf b

where B is the mode amplitude of the —=z traveling wave. At z = 0,
Egs. (1-86) must be satisfied. Take the (1) side to be z > 0, so that
n = u,, and obtain

—wlHF — Hymo = Js [E:t — E; oo =0
Substitution for H, and E. from above reduces these equations to
A+ B . wy _ R
—-u, Zs sin — s A—B=0
Let J, = uJosin X (3-2)
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The preceding equations then have the solution A = B = —JoZy/2.
Thus, if the current of Eq. (3-2) exists over the guide cross section z = 0,
then

JOZZO sin Z¥ g z2>0
E, = 7.7 (3-3)
- 02 % sin rg; ez z2<0

It would admittedly be difficult to obtain the current of Eq. (3-2) in
practice, but this is not of concern at present. We shall learn how to
treat more practical problems later. Note that our approach in this
problem was to assume the field and find the current. This we shall find
to be a very powerful concept. '

3-2. Duality. If the equations describing two different phenomena
are of the same mathematical form, solutions to them will take the same
mathematical form. The formal recognition of this is called the concept
of duality. Two equations of the same mathematical form are called dual
equations. Quantities occupying the same position in dual equations are
called dual quantities. Note that the field equations, Egs. (3-1), are
duals of each other. A systematic interchange of symbols changes the
first equation into the second, and vice-versa.

A-duality of importance to us is that between a problem for which
all sources are of the electric type and a problem for which all sources
are of the magnetic type. The first two rows of Table 3-1 give the field
equations in each case. The last two formulas of column (1) were
derived in Sec. 2-9 for homogeneous space. The corresponding equa-
tions for the magnetic source case are evidently the last two formulas of
column (2), obtained by systematically interchanging symbols. The
particular interchange of symbols is summarized by Table 3-2. The
reader should check for himself that a replacement of the symbols of

TasrE 3-1. DuarL EquaTioNs FOR ProBrLEMs IN WHicH (1) OnLY ELECTRIC
Sources Exist anp (2) OnNLY MaenETIc SOURCES EXIsST

(1) Electric sources (2) Magnetic sources
VXH=9E +]J —-VXE=(H+M
~V X E =%H vXH=4gE
H=VvXA E=~-VXF

il | i
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TaBLE 3-2. DuaL QuaNTITIES FOR PROBLEMS IN WHICH (1) ONLY ELECTRIC
Sources Exist, anp (2) OnLY MAGNETIC SoURcEs ExisT

(1) Electric (2) Magnetic
sources sources
E H
H -E
J M
A F
7 2
& 9
k k
n 1/7

column (1) of Table 3-2 by those of column (2) in the equations of column
(1) of Table 3-1 results in the equations of column (2). The quantity F -
of these tables is called an eleciric vector potential, in analogy to A, a mag-
netic vector potential,

The concept of duality is important for several reasons. It is an aid to
remembering equations, since almost half of them are duals of other equa-
tions. It shows us how to take the solution to one type of problem, inter-
change symbols, and obtain the solution to another type of problem. We
can also use a physical or intuitive picture that applies to one type of
problem and carry it over to the dual problem. For example, the picture
of electric charge in motion giving rise to an electric current can also be
used for magnetic case. That is, we can picture magnetic charge in
motion as giving rise to magnetic current. Such a picture can serve as
a guide to the mathematical development but cannot, of course, serve to
argue for the existence of magnetic charges in nature. The concept of
duality is based wholly on the mathematical symmetry of equations.

It is often convenient to divide a single problem into dual parts, thus
cutting the mathematical labor in half. For example, suppose we have
both electric and magnetic sources in a homogeneous medium of infinite
extent. The field equations, Eqgs. (3-1), are linear; so the total field can
be considered as the sum of two parts, one produced by J and the other
by M. To be explicit, let

E=EI+EII H=HI+HII
where VXH =9E"+7J -V X E' = 2H’
and v X H' = gE” —VXE'=tH'+M

We have the solution for each of these partial problems in Table 3-1.
The complete solution is therefore just the superposition of the two partial
solutions, or

E=-VXF+§(VXVXA-])

H-VXA+2(VXVXF—M) (3-4)
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1 1 p—7klr—r’|
where AG) = o f / % ar
p < L [[[ M@ &9
%)) T r=m

We thus have the formal solution for any problem consisting of electric
and magnetic currents in an unbounded homogeneous region. The above
formulas are meant to include by implication sheets and filaments of
currents.

It is instructive to show that an infinitesimal dipole of magnetic current
18 indistinguishable from an infinitesimal loop of electric current. We might
suspect this from the circuit source representations of Fig. 3-1. How-
ever, rather than rely on this argument, let us consider the fields explicitly.
A z-directed magnetic current dipole of moment KI at the coordinate
origin is the dual problem to the electric current dipole (Fig. 2-21). An
interchange of symbols, according to Table 3-2, in Eqs. (2-113) will give
us the field of the magnetic current element. For example, the electric

intensity is
Kl _. (7% 1
Ey = —dkr (L2 4o = ) si
# 0 ¢ 7 (r r2> sin 6

The small loop of electric current is considered in Probs. 2-41 and 2-42
and is pictured in Fig. 2-26. Abstracting from Prob. 2-42, we have the
electric intensity given by

oIS . [k gk ..
E¢ -—Ee Ik <7 —F)smﬁ
A comparison of the above two equations shows that they are identical if
Kl = joulS (3-6)

This equality is illustrated by Fig. 3-3. Thus, effect of an element of
magnetic current can be realized in practice by a loop of electric current.

3-3. Uniqueness. A solution is said to be unique when it is the only
one possible among a given class of solutions. It is important to have

S

* Kl -y
(@) (8)

Fig. 3-3. ’:Fhese two sources radiate the Fra. 3-4. S encloses linear matter and
same field if Kl = joulS. (a) Magnetic sources J, M.
current element; (b) electric current loop.

i S
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precise theorems on uniqueness for several reasons. First of all, they tell
us what information is needed to obtain the solution. Secondly, it is
comforting to know that a solution is the only solution. Finally, unique-
ness theorems establish conditions for a one-to-one correspondence of a
field to its sources. This allows us to calculate the sources from a field,
as well as the more usual reverse procedure.

Suppose we have a set of sources J and M acting in a region of linear
matter bounded by the surface S, as suggested by Fig. 3-4. Any field
within S must satisfy the complex field equations, Eqgs. (3-1). Consider
two possible solutions, E*, H* and E?, H®. (These can be thought of as
the fields when the sources outside of S are different.) We form the
difference field E, sH according to,

E = E* — E? 8H = H* — H?
Subtracting Eqs. (3-1) for the a field from those for the b field, we obtain
—Vv X 6E = 26H
v x ¢H = § oE

Thus, the difference field satisfies the source-free field equations within S.
The conditions for uniqueness are those for which éE = éH = 0 every-
where within S, for then E* = E®* and H* = H".

We now apply Eq. (1-54) to the difference field and obtain

# (5E x oH*) -ds + /// (|5H|? + §*|5E|?) dr = 0
# (3E x 6H*) -ds = 0 (3-7)

: within S

Whenever

over S, the volume integral must also vanish. Thus, if Eq. (3-7) is true,
then

[[[ e @oHP + Re @)135F]dr = 0
f/f [Im (2)|6H|* — Im (§)|E[*] dr = O

For dissipative media, Re (2) and Re (§) are always positive. If we
assume some dissipation everywhere, however slight, then Egs. (3-8) are
satisfied only if 8E = 8H = 0 everywhere within S.

Some of the more important cases for which Eq. (3-7) is satisfied, and
therefore uniqueness is obtained in lossy regions, are as follows. (1) The
field is unique among a class E, H having n X E specified on S, for then
n X 8E = 0 over S. (2) The field is unique among a class E, H having
n X H specified on 8, for then n X §H = 0 over 8. (3) The field is
unique among a class E, H having n X E specified over part of S and
n X Hspecified over the rest of S. These possibilities can be summarized
by the following uniqueness theorem. 4 field in a lossy region is uniquely

(3-8)
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specified by the sources within the region plus the tangential components of E
over the boundary, or the tangential components of H over the boundary, or
the former over part of the boundary and the latter over the rest of the boundary,
Note that our uniqueness proof breaks down for dissipationless media.
To obtain uniqueness in this case, we consider the field in a dissipationless
medium to be the limit of the corresponding field in a lossy medium as the
dissipation goes to zero.

We have explicitly considered only volume distributions of sources and
closed surfaces in our development, but the results are much more general
than this. Singular sources, such as current sheets and current filaments,
can be thought of as limiting cases of volume distributions and therefore
are included by implication. Surfaces of infinite extent can be thought of
as closed at infinity and can be included by appropriate limiting proce-'
dures. Of particular importance is the case for which the bounding sur-
face is a sphere of radius r — «, so that all space is included. If the
sources are of finite extent, the vector potential solution of Egs. (3-4) and
(3-5) vanishes exponentially as e=*"r, r — 0, We therefore have

limdpE X H*.ds =0 (3-9)

for this solution (in lossy media). According to our uniqueness proof
this must be the only solution for a class E, H satisfying Eq. (3-9).
Thus, given sources of finite extent in an unbounded lossy region, any solu-
tion satisfying Eq. (3-9) must be identically equal to the potential integral
solution. The loss-free case can be treated as the limit of the lossy case
as dissipation vanishes.

To illustrate the above concepts, consider the current element of Fig.

2-21.  Our solution at large r is Eq. (2-114). Let this be the @ solution
of our uniqueness proof, or

Hye = .%TI,{ ¢~ gin 6 Ep = gH s

It can be shown that the inward-traveling wave

—J1l .. .
Hp = SNy e’*" gin ¢ Ed = —qH?
is also a solution to the equations at large r. In Sec. 2-9, we threw out
this second solution by reasoning that waves must travel outward from
the source, not inward. Let us now consider these two solutions in the
light of the uniqueness theorem. The difference field in this case is

6H, = Hye — Hp =j>\L:cos krsin 9
0Ey = Eo" — Eab = ngsinkrsina
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issipationless media (k real), we can pick 2 sphere r = i:onstanf, such-
iﬁa?:is;ﬁ:: 3H, or 8E, vanishes. Thus, Eq. 3-7) can be satlsﬁeg w1t¥101lzt
obtaining uniqueness of the solution. However, 1n lossx m(:,:1 t{a, sin kr
and cos kr have no zerosr > 0, and Eq. (3-7) cannot be sa,’c_1sﬁ}e1 c;r anir !:'
In this case, only the a solutio(ril vapishes as r — ©. It is therefore the

i ion in lossfree media. . .
desslf«ifi ;;r(;::;zor'};leom. Problems for which the field in a glvendreglox;
of space is determined from a knowledge of the field over the bmlm ary o_
the region are called boundary-value problems. The rectangu a‘,;‘r Waﬁ’ei]
guide of Sec. 2-7 is an example of a boundary-value prob%em. }f S z:i
now consider a class of boundary-value problems for which .thI(: ound-
ary surface is a perfectly conducting plane. The procedure is known as
m’?‘i %l:l(l);ﬁéry conditions at a perfect electric conductor zf‘r'e Vam,s,hlixg
tangential components of E. An element of source plus an image”’ ele-
ment of source, radiating in free space, pr.od:u?e_ zero tangential compo-
nents of E over the plane bisecting the hne- joining ’?he two eler_nenlts.
According to uniqueness concepts, tl%e solution to this problem is ’al,‘ Eo
the solution for a current element adj a.cent to a plane'conductor_. ] be
necessary orientation and excitation of image elements is summar(lize - y
Fig. 3-5. Matter also can be imaged. F.‘or examplfa, if a con uct }11ng
sphere is adjacent to the plane conductor in the orlgl.nal prleem, i)n
two conducting spheres at image points are necessary in t.he image prob-
lem. In other words, we must maintain symmetry in the image problr(la‘ltxlw..
The procedure also applies to magnetic c.onductors ina dual. sendse.h he
application of image theory in a-¢ fields is much more ‘restncte than in
d-c fields. It is exact only when the pl.ane conductor is perfect.

As an example of image theory, cons1de1: a cprrent elemer_lt normal to
the ground (conducting) plane, as shown in Fig. 3-6a. This must pro;
duce the same field above the ground.plane as do the two elements o
Fig. 3-6b. Let us determine the radiatl.on field. The
radius vector from each current element is then parallel .
to that from the origin and given by 2 * B,

To:y—dcos0} r>d
7-1.=7-+ch50

—
. /
where subscripts o and 7 refer to original and image t *Kl
elements, respectively. The radiation field of a single 7
-

element is given by Eq. (2-114); so the radiati(?n- field >> Kl
of the two elements of Fig. 3-6b is the superposition :
(4 ) ano /

He = 2 \'r T F1. 3-5. A sum-

mary of image

~ ‘%l e—i*r cos(kd cos 6) sin ¢ (3-10) theory.
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Fre. 3-6. A current element adjacent to a ground plane. (a) Original problem; (b)
image problem.

and Ey = 9H,. According to image theory, this must also be the solu-
tion to Fig. 3-6a above the ground plane.

The problem of Fig. 3-6a represents the antenna system of a short
dipole antenna adjacent to a ground plane. The total power radiated
by the system is

- /2 .
@y = E H%*ds = 21y [Hyl2 72 sin 6 do
J ) |
sphere
where integration is over the large hemisphere z > 0, 7 — . Substi-
tuting from Eq. (3-10) and integrating, we have

211 cos 2kd + sin 2kd
3 (2kd)? (2kd)3

As kd — «, the power radiated is equal to that radiated by an isolated
element [Eq. (2-116)]. As kd — 0, the power radiated is double that
radiated by an isolated element. The gain of the antenna system over
an omnidirectional radiator, according to Eq. (2-130), is

@f = 27r17|§l

(3-11)

_ 4’”7'2771H¢,2
=%,
_ 2
1 cos2kd _ sin 2kd
3 (Ckd)? T (2kd)®

along the ground plane. Thisisg = 3 at kd = 0, and g=6askd — «,
The maximum gain oceurs at kd = 2.88, for which g = 6.57. Thus, a
gain of more than four times that of the isolated element (1.5) can be
wchieved. Figure 3-7 shows the radiation field patterns for the cases

(3-12)
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Fic. 3-8. Problems involving multiple images. (a) Current element in a conducting
tube; (b) current element in a conducting wedge.
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d = 0 (element at the gound plane surface) and d = 0.459\ (maximum
gain).

Image theory also can be applied in certain problems involving more
than one conducting plane. Two such cases are illustrated by Fig. 3-8.
In the case of a conducting tube (Fig. 3-8a), an infinite lattice of images
is needed. In the case of a conducting wedge (Fig. 3-8b), a finite set of
images results. Image theory can be used for conducting wedges when
the wedge angle is 180°/n (n an integer).

3-6. The Equivalence Principle. Many source distributions outside
a given region can produce the same field inside the region. For example,
the image current element of Fig. 3-6b produces the same field above the
plane z = 0 as do the currents on the conductor of Fig. 3-6a. Two
sources producing the same field within a region of space are said to be
equivalent within that region. When we are interested in the field in a
given region of space, we do not need to know the actual sources. Equiv-
alent sources will serve as well.

A simple application of the equivalence principle is illustrated by Fig.
3-9. Let Fig. 3-9a represent a source (perhaps a transmitter and antenna)
internal to S and free space external to 8. We can set up a problem
equivalent to the original problem external to S as follows. Let the
original field exist external to S, and the null field internal to S, with
free space everywhere. This is shown in Fig. 3-9b. To support this field,
there must exist surface currents J,, M, on S according to Eqs. (1-86).
These currents are therefore

Jx=nXH M3=Exn (3-13)

where n points outward and E, H are the original fields over 8. Since
the currents act in unbounded free space, we can determine the field from
them by Eqgs. (3-4) and (3-5). From the uniqueness theorem, we know
that the field so calculated will be the originally postulated field, that is,
E, H external to S and zero internal to 8. The final result of this pro-
cedure is a formula for E and H everywhere external to S in terms of the
tangential components of E and H on 8.

EH EH
n n
oo T —_——
/7 EH D /// ~ (4
/ \ Zero
{ / Sources 4 \
} \ field J, = nXH
N J \ »
S\\\___’/ S\\_/‘//M,=EXn
@) ®)

Fia. 3-9. The equivalent currents produse the same field external to S as do the
original sources.

N
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F1a. 3-10. A general formulation of the equivalence principle. (a) Ori_gina,l a prob-
lem; (b) original b problem; (c) equivalent to a external to S and to b internal to S;
(d) equivalent to b external to S and to a internal to S.

We were overly restrictive in specifying the null field internal to S in
the preceding example. Any other field would serve as well, giv.ing us
infinitely many equivalent currents as far as the external region is con-
cerned. This general formulation of the equivalence principle is repre-
sented by Fig. 3-10. We have two original problems consisting of cur-
rents in linear media, as shown in Fig. 3-10a and b. We can set up a
problem equivalent to a external to S and equivalent to b internal to S
as follows. External to S, we specify that the field, medium, and sources
remain the same as in the @ problem. Internal to S, we specify that the
field, medium, and sources remain the same as in the b problem. To sup-
port this field, there must be surface currents J, and M, on S. According
to Eqgs. (1-86), these are given by

J.=nXx (H* - H M,=(Es—E) Xn (3-14)

where E¢, He is the field of the ¢ problem and E?, H? is the field of the
b problem. This equivalent problem is shown in Fig. 3—190. We can
also set up a problem equivalent to b external to S and to @ internal to S
in an analogous manner, as shown in Fig. 3-10d. In this case the. neces-
sary surface currents are the negative of Eqs. (3-14). Note that in ea..ch
case we must keep the original sources and media in the region for which
we keep the field. Note also that we cannot use Egs. (3-4) and (3-5) to
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S\\~ _ conductor __ conductor

' S M —Exn ° J. = nxH
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Fig. 3-11. The ﬁeld external to S is the same in (a), (b), and (¢). (a) Original prob-
lem; (b) magnetic current backed by an electric conductor; (c) electric current backed
by a magnetic conductor.

_determjne the field of the currents unless the equivalent currents radiate
into an unbounded homogeneous region. Finally, note that the restricted
form of the equivalence principle (Fig. 3-9) is the special case of the
general form for which all ¢ sources and matter lie inside S and all b
sources are zero.

S9 far, we have used the tangential components of both E and H in
setting up our equivalent problems. From uniqueness concepts, we know
that the tangential components of only E or H are needed to determine
the field. We shall now show that equivalent problems can be found in
terms of only magnetic currents (tangential E) or only electric currents
(tangential H).

_Consider a problem for which all sources lie within S, as shown in
Fig. 3-11a. We set up the equivalent problem of Fig. 3-11b as follows.
Over S we place a perfect electric conductor, and on top of this we place
a sheet qf magnetic current M,. External to S we specify the same field
and medium as in the original problem. Since the tangential components
of E are zero on the conductor (just behind M,), and equal to the original
field components just in front of M,, it follows from Eqgs. (1-86) that

M,=EXn (3-15)

We now have the same tangential components of E over § in both Fig.
3-11a and b; so according to our uniqueness theorem the field outside of S
must be the same in both cases. We can derive the alternative equiva-
lent problem of Fig. 3-11¢ in an analogous manner. For this we need
the perfect magnetic conductor, that is, a boundary of zero tangehtial
components of H. We then find that the electric current sheet

Ja =n X H (3"16)

over. a perfect magnetic conductor covering S produces the same field
external to S as do the original sources.

By now, the general philosophy of the equivalence principle should be
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apparent. It is based upon the one-to-one correspondence between fields
and sources when uniqueness conditions are met. If we specify the field
and matter everywhere in space, we can determine all sources. We
derived our various equivalences in this manner.

Considerable physical interpretation can be given to the equivalence
principle. For example, in the problem of Fig. 3-9b, the field internal to
S is zero. It therefore makes no difference what matter is within S as
far as the field external to S is concerned. We have previously assumed
that free space existed within S, so that the potential integral solution
could be applied. We could just as well introduce a perfect electric con-
ductor to back the current sheets of Fig. 3-9b. It can be shown by
reciprocity (Sec. 3-8) that an electric current just in front of an electric
current conductor produces no field. (We can think of the conductor as
shorting out the current.) Therefore, the field is produced by the mag-
netic currents alone, in the presence of the electric conductor, which is
Fig. 3-11b. Alternatively, we could back the equivalent currents of Fig.
3-0b with a perfect magnetic conductor and obtain the equivelent prob-
lem of Fig. 3-11c. When matter is placed within S in Fig. 3-0b, the
partial fields produced by J, alone and M, alone will change external to S,
but the total field must remain unchanged.

Perhaps it would help us to understand the equivalence principle if we
considered the analogous concept in circuit theory. Consider a source
(active network) connected to a passive network, as shown in Fig. 3-12a.
We can set up a problem equivalent to this as far as the passive network
is concerned, as follows. The original source is switched off, leaving the
source impedance connected. A current source I, equal to the terminal
current in the original problem, is placed across the terminals. A voltage

I
- Y+
[ ¥ O [ o]
Passive Source Passive
Source } V | network Impedance | I Té network
[=, O O
(@) (b)
+ o o
v Passive Passive
network I network
=0 =0
(c) @

Fig. 3-12. A circuit theory analogue to the equivalence principle. (a) Original prob-
lem; (b) equivalent sources; (c) source impedance replaced by a short circuit; (d)
source impedance replaced by an open circuit.
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source V, equal to the terminal voltage in the original problem, is placed
in series with the interconnection. This is illustrated by Fig. 3-12b. It
is evident from the usual circuit concepts that there is no excitation of
the source impedance from these equivalent sources, whereas the exci-
tation of the passive network is unchanged. Thus, Fig. 3-12b is the
circuit analogue to Fig. 3-9b.

Since there is no excitation of the source impedance in Fig. 3-12b, we
may replace it by an arbitrary impedance without affecting the excitation
of the passive network. This is analogous to the arbitrary placement of
matter within S in the field equivalence of Fig. 3-95. In particular, let
the source impedance be replaced by a short circuit. This short-circuits
the current source and leaves only the voltage source exciting the network
(recall circuit theory superposition). Thus, the voltage source alone, as
illustrated by Fig. 3-12¢, produces the same excitation of the passive net-
work as does the original source. This is analogous to the field problem
of Fig. 3-116. Now consider the source impedance of Fig. 3-12b replaced
by an open circuit. This leaves only the current source exciting the net-
work, as shown in Fig. 3-12d. This is analogous to the field problem of
Fig. 3-11c.

3-6. Fields in Half-space. A combination of the equivalence principle
and image theory can be used to obtain solutions to boundary-value
problems for which the field in half-space is to be determined from its
tangential components over the bounding plane. To illustrate, let the
original problem consist of matter and sources z < 0, and free space
2 > 0, as shown in Fig. 3-13a. An application of the equivalence con-
cepts of Fig. 3-11b yields the equivalent problem of Fig. 3-13b. This
consists of the magnetic currents of Eq. (3-15) adjacent to an infinite

z=0 z=0 z=0
EH | EH EH EH
Zero Image
l field field
Sources and | _
matter S
I 8
3
o
| S MM, = Exn M, = 2EXn
| o .
| 8
w
|
|—> n n
@)

® (0)
F1a. 3-13. Illustration of the steps used to establish Eq. (3-17).

|
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|
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|

|

(@) ®

Fia. 3-14. A coaxial line opening onto a ground plane. (@) Original problem; (b)
equivalent problem.

ground plane. We now image the magnetic currents in the ground plane,
according to Fig. 3-5. The images are equal in magnitude to, and essen-
tially coincident with, the M, of Fig. 3-13b. Thus, as plctured in Fig.
3-13¢c, the magnetic currents 2M, radiating into unbounded space pro-
duce the same field z > 0 as do the original sources. They produce an
image field z < 0, which is of no interest to us. The field of Fig. 3 13c is
then calculated accordmg to Egs. (3-4) and (3-5) with A = 0. ThlS can
be summarized mathematically by

e—iklr—t’ |

Ef) = -V X // ot = 7] E(r’) X ds’ (3-17)
plane

This is & mathematical identity valid for any field E satisfying Eq. (2-3).

The H field satisfies Eq. (2-4), which is identical to Eq. (2-3); so the

above identity must also be valid for E replaced by H. We can show

this by reasoning dual to that used to establish Eq. (3-17). .

The above result is particularly useful for problems involving a.pertulzes
in conducting ground planes. As an example, suppose we have a C(‘)amal
transmission line opening into a ground plane (Fig. 3-14a). According .to
the above discussion, the field must be the same as that produced by Fig.
3-14b. Note that M, exists only over the aperture (coax opening), for
tangential E is zero over the ground plane. Let us asume that t]:.'le field
over the aperture is the transmission-line mode of the coax, that is

.
* " plog (b/a)
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where V is the line voltage. T i i i
ront 10 Tl 3 0b0 & g o this approximation, the magnetic cur-

v
M,=—YV
* ~ plog (b/a)

(’fihlsl is g loop of. magnetic c'urrent which, if b <A, acts as an electric
pole (dual to Fig. 3-3). Visualize this current as a continuous distri-

bution of magnetic current fila,
ments of strength =
moment of the source is then nEth it = My dp. Thetotal

KS = / 2dK = TV 4
b Tog (¢/a) [, P %

- TV —a?)
2 log (b/a) (3-18)

The equivalent electri }
Eaq. (3.6), or ric current element must satisfy the equation dual to
Il = —jueKS (3.10)

in}::age n((:-)%w1 geduced the problem to that of Fig. 3-6a with kd = 0
given byq' ) and the above equalities, we have the radiation field
_ vV —a®) . .

¢ 2xr log (b/a) e~ 81 8 (3-20)

and Ey = nH,. Thus, the radiation field i
; . ’ patternl is the d = 0
Fl%;h3—7. The gain of the antenna system is g = 3. curve of
e power radiated is Eq. (3-11) with kd = .
(3-18) arid (3-19), or ) 0 and 7! given by Egs.

By = 2y | STV — a) 22
F = 4T "oXTog (b/a) | 3
= A0t — eV P2
31| Alog (b/a) (3-21)

i\T ote that the power radiated varies inversely as A%. Note also that our
Trlllsiwgrs. are referred to a voltage, characteristic of aperture antennas.
] 1% In contrast to answers referred to current for wire antennas. For
aperture antennas we define a radiation conductance according to
_ &
G‘r - lVlz (3-22)
where V is an arbitrary reference voltage. In the coaxial radiator of

Fig. 3-14 it is logical i :
gical to pick this ¥ to be the coaxial V at th
Hence, the radiation conductance is 8% the aperture.

G = 415 b2 — g2 T2
T 3 | A\tlog (B/a) ] (3-23)
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E=E+4Es Ee

f Source

/ Obstacle

n

Obstacle ; J; = HiXn
/Ms = nXE:

(@) )]
Fia. 3-15. Illustration of the induction theorem. (@) Original problem; (b) induction
equivalent.

i

For the usual coaxial line, G- is small, and the coaxial line sees nearly an
open circuit. As a and b are made larger, the radiation becomes more
pronounced, but our formulas must then be modified.!

3-7. The Induction Theoréem. We now consider 2 theorem closely
related in concept to the equivalence principle. Consider a problem in
which a set of sources are radiating in the presence of an obstacle (material
body). This is illustrated by Fig. 3-15a. Define the incident field E,
Hi as the field of the sources with the obstacle absent. Define the
scattered field E*, He as the difference between the field with the obstacle
present (E, H) and the incident field, that is,

EE-E—E H:=H H (3-24)

This scattered field can be thought of as the field produced by the cur-
rents (conduction and polarization) on the obstacle. External to the
obstacle, both E, H and E?, H' have the same sources. The scattered field
E¢, H* is therefore a source-free field external to the obstacle.

We now construct a second problem as follows. Retain the obstacle,
and postulate that the original field E, H exists internal to it and that
the scattered field Es, H* exists external to it. Both these fields are
source-free in their respective regions. To support these fields, there
must be surface currents on S according to Egs. (1-86), that is,

J.=n X (H — H) M,=(E —E)Xn
where n points outward from S. According to Eqgs. (3-24), these reduce to
Jo=HiXn M, =n X Ef (3-25)
It follows from the uniqueness theorem that these currents, radiating in

the presence of the obstacle, produce the postulated field (E, H internal
to 8, and E¢, H* external to 5). This is the induction theorem, illustrated
by Fig. 3-15b.

It is instructive to compare the induction theorem with the equiva-

1 H. Levine and C. H. Papas, Theory of the Circular Diffraction Antenna, J. Appl.
Phy., vol. 22, no. 1, pp. 2943, January, 1951.
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lence theorem. The latter postulates E, H internal to S and zero field
external to S, which must be supported by currents

L=HXn Ma=an

on 8. These currents can be considered as radiating into an unbounded
medium having constitutive parameters equal to those of the obstacle.
Thus, we can use Egs. (3-4) and (3-5) to calculate the field of the above
currents. However, we do not know J, and M, until we know E, H on S,
that is, until we have the solution to the problem of Fig. 3-15a. We can,
however, approximate J, and M, and from these caleculate an approxi-
mation to E, H within S.

In contrast to the above, the induction theorem yields known currents
[Egs. (3-25)]. (This assumes that E/, H is known.) We cannot, how-
ever, use Egs. (3-4) and (3-5) to calculate the field from J,, M,, for they
radiate in the presence of the obstacle. A determination of this field is a
boundary-value problem of the same order of complexity as the original
problem (Fig. 3-15a). We can, however, approximate the field of Js, M,
and thereby obtain an approximate formula for E, H internal to S and
Es, H® external to S. '

A simplification of the induction theorem occurs when the obstacle is
a perfect conductor. This situation is represented by Fig. 3-16a. The
solution E must satisfy the boundary condition n X E = 0 on S (zero
tangential E). It then follows from the first of Eqs. (3-24) that

nXE =—-nXE onS (3-26)

We now know the tangential components of E* over S; so we can con-
struct the induction representation of Fig. 3-16b as follows. We keep
the perfectly conducting obstacle and specify that external to S the field
E’, He exists. To support this field, there must be magnetic currents on
S given by

M,=E*Xn=nXE (3-27)

We can visualize this current as causing the tangential components of E

to jump from zero at the conductor to those of E* just outside M,. The
E = Ei + E= Es

f Source

e

Perfect
conductor

Perfect
conductor

/Ma = nXEi

(@ ®)

Fi6. 3-16. The induction theorem as applied to a perfectly conducting obstacle. (a)
Original problem; (b) induction equivalent.
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Ei + Es E»
Incident wave M. M.
—_—
N Conducting Conducting
plate plate
(@) ®

Fie. 3-17. Scattering by a conducting plate. (a) Original problem; (b) induction
equivalent.

tangential components of E in Fig. 3-16b therefore have been forced to
be E*. Thus, according to uniqueness concepts, the currents of Eq. (3-27)
radiating in the presence of the conducting obstacle must produce E¢, H*
external to S. _ ' .

It is interesting to compare this result with the previous one (Fig.
3-15b). We found that, in general, both electric and magnetic curregts
exist on S in the induction representation. How, then, can both Fig.
3-15b and Fig. 3-16b be correct for a perfectly conducting obstacle? Tl%e
answer must be that an electric current impressed along a perfe?t elgctnc
conductor produces no field. If the conductor is pla{le, this is .ev1d§nt
from image theory. We can prove it, in general, by using the reciprocity
concepts of the next section. .

To illustrate an application of the induction theorem, consider the
problem of determining the back scattering, or radar echo, from a large
conducting plate. This problem is suggested by Fig. 3-17a. _ For normal
incidence, let the plate lie in the z = 0 plane and let the incident field be
specified by

Ei = Eye* (3-28)
According to the induction theorem, the scattered field is produced by
the currents M, = E, on the side facing the source and M, = —E, on

the side away from the source. These currents radiate in the presence
of the original conducting plate, as represented by Fig. 3-17b. Let the
field from each element of current be approximated by the field from an
element adjacent to a ground plane. According to image theory, this
means that each element of M, seen by the receiver radiates as 2M, = 2E,
in free space. Hence, far from the plate, it contributes

- jkE 0 ds
—t————¢

2nr

—ikT

dE; =
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in the back-scatter direction. Each element not seen by the receiver
contributes nothing to the back-scattered field. Summing over the entire
plate, we have the distant back-scattered field given by

o kB4

o 29)

Es = // dE,

plate

where A is the area of the plate.

The echo area or radar cross section of an obstacle is defined as the area
for which the incident wave contains sufficient power to produce, by
omnidirectional radiation, the same back-scattered power density. In
mathematical form, the echo area is

A, = lim (zmz é) (3-30)
rew g

where §f is the incident power density and §° is the scattered power

density. For our problem, §¢ = |E,|2/y and, from Eq. (3-29),

$ = 1|kE.A
7| 2mr

2

The echo area of a conducting plate is therefore

]2 2 K 2
4, ~ A ——J“;f (3-31)

™

valid for large plates and normal incidence.

3-8. Reciprocity. In its simplest sense, a reciprocity theorem states
that a response of a system to a source is unchanged when source and
measurer are interchanged. In a more general sense, reciprocity theo-
rems relate a response at one source due to a second source to the response
at the second source due to the first source. We shall establish this type
of reciprocity relationship for a-c fields. The reciprocity theorem of cir-
cuit theory is a special case of this reciprocity theorem for fields.

Consider two sets of a-c sources, J¢, M and J*, M?, of the same fre-
quency, existing in the same linear medium. Denote the field produced
by the a sources alone by E¢, H, and the field produced by the b sources
alone by E®, H>. The field equations are then

V X He = gE* 4 Jo Vv X H® = gE* 4
—V X E*=ZH*+ M* -V X Et=sH> 4 M?

We multiply the first equation scalarly by E* and the last equation by H*
and add the resulting equations. This gives

—V: (E* X H) = gE°- E* + sHe- H® + Eb- Jo 4+ He . M
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where the left-hand term has been simplified by the identity
V-AXB)=B-VXA—-A-VXB
An interchange of a and b in this result gives
—v.(E* X H®) = gE*-E* 4 #H* -H* 4 E°- J* + H*- M
A subtraction of fhe former equation from the latter yields

—v.(E* X H® — Eb X H?) = E*. J* 4 H>- M — E°- Jo — He. M® |
(3-32

At any point for which the fields are source-free (J = M = 0), this
reduces to ‘ -
v-ExH —E X H*) =0 (3-33)

which is called the Loreniz reciprocity theorem. If Eq. (3-33) is int(?grated
throughout a source-free region and the divergence theorem applied, we

have )
# (E* x H* — Eb X H) - ds = 0 (3-34)

which is the integral form of the Lorentz reciprocity theorem for a source-

free region. ‘
For a region containing sources, integration of Eq. (3-32) throughout

the region gives
—#(Ea x Hb — Eb X H°) - ds
= //f (Be-J* — He. MP — Eb-Jo + H - M) dr  (3-35)

Let us now postulate that all sources and matter are of finite extent.
Distant from the sources and matter, we have (see Sec. 3-13)
Ea = ﬂH¢ Ed’ = ""‘T]Ha

The left-hand term of Eq. (3-35), integrated over a sphere of radius
r— o, is then

-7 # (HeHs + Hy*Hyb — HeHy® — HPHy®) ds = 0
Equation (3-35) now reduces to
/[/ (B Jo — He - MY) dr = [// (Bb-Jo — H* - M) dr  (3-36)

where the integration extends over all space. This is the most useful
form of the reciprocity theorem for our purposes. Equatlon. (3-36) also
applies to regions of finite extent whenever Eq. (3-34) is satisfied, For
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example, fields in a region bounded by a perfect electric conductor satisfy
Eq. (3-34); hence Eq. (3-36) applies in this case.

The integrals appearing in Eq. (3-36) do not in general represent power,
since no conjugates appear. They have been given the name reaction.!
By definition, the reaction of field a on source b is

@by = [[[ @ -p-B-M)ar (3-37)
In this notation, the reciprocity theorem is
(a,b) = (b,0) (3-38)

that is, the reaction of field a on source b is equal to the reaction of
field b on source a. Reaction is a useful quantity primarily because
of this conservative property. For example, reaction can be used as a
measure of equivalency, since a source must have the same reaction with
all fields equivalent over its extent. This equality of reaction is a neces-
sary, but not sufficient, test of equivalence as defined in Sec. 3-5. We
shall use the term self-reaction to denote the reaction of a field on its own
sources, that is, (a,a).

A valuable tool for expositional purposes can be obtained by using the
circuit sources of Fig. 3-1 in the reaction concept. For a current source
(Fig. 3-1a), we have

(a,b) = /E°-Ibdl= Ib/Ea-d1= — Ve

where V° is the voltage across the b source due to some (as yet unspeci-
fied) a source. For a voltage source (Fig. 3-1b), we have K® = — V%, and

@h = — $H Ko dl = ~K* P He- dl = VoI

where I is the current through the b source due to some a source. To
summarize, the “circuit reactions’ are

(a,b) = ’ —var b a current source

+ V¢ b a voltage source (3-39)

If we use a unit current source (I* = 1), then (a,b) is a measure of Ve
(the voltage at b due to another source a). If we use.a unit voltage
source (V® = 1), then (a,b) is a measure of I* (the current at b due to
another source a). :

To relate our reciprocity theorem to the usual circuit theory state-
ment of reciprocity, consider the two-port (four-terminal) network of

! V. H. Rumsey, The Reaction Concept in Electromagnetic Theory, Phys. Rev.,
ser. 2, vol. 94, no. 6, pp. 1483-1491, June 15, 1954,
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Fig. 3-18. The characteristics of a linear network can be described by
the impedance matrix [z] defined by

Vl] [211 sz] [Il]

= 3-40
[ Vs 291 292 | 1s ( )
Suppose we apply a current source I; at port 1 and a current source I, at
port 2. Let the partial response V;; be the voltage at port ¢ due to source

I; at port . Each current source sees the other port open-circuited (see
Fig. 3-1a); hence

2y = %
In terms of the circuit reactions [Eq. (3-39)], (7,7) = —V;I;; hence
2y = — (IJ_,? (3'41)
ilj

Thus, the elements of the impedance matrix are the various reactions
among two unit current sources. The reciprocity theorem [Eq. (3-38)],
applied to Eq. (3-41), shows that

2y = 25 (3‘42)

which is the usual statement of reciproeity in circuit theory. KEquations
(3-41) and (3-42) also apply to an N-port network. The use of voltage
sources instead of current sources gives reactions proportional to the ele-
ments of the admittance matrix [y], and reciprocity then states that
Yij = Y-

The proofs of many other theorems can be based on the reciprocity
theorem. For example, the preceding paragraph is a proof that any
network constructed of linear isotropic matter has a symmetrical tmped-
ance mairiz. This “network” might be the two antennas of Fig. 3-19.
Reciprocity in this case can be stated as: The voltage at b due to a cur-
rent source at a is equal to the voltage at a due to the same current
source at b. If the b antenna is infinitely remote from the a¢ antenna,
its field will be a plane wave in the vicinity of ¢, and vice versa. The
receiving pattern of an antenna is defined as the voltage at the antenna

I I; \
®)

—_— P

+ ro———0 Of——=07 +

Vi { (1) 2) } V2 (@) \
© ™ Network

Fia. 3-18. A two-port network, Fia. 3-19, Two antennas.
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terminals due to a plane wave incident upon the antenna. The reci-
procity theorem for antennas can thus be stated as: The receiving pattern
of any antenna constructed of linear tsotropic matter is identical to its trans-
mitting patlern.

In Secs. 3-5 and 3-7, we used the fact that an electric current impressed
along the surface of a perfect electric conductor radiated no field. The
reciprocity theorem proves this, in general, as follows. Visualize a set of
terminals @ on the conductor and another set of terminals b in space
away from the conductor. A current element at b produces no tangential
component of E along the conductor; so Vg (V at a due to I) is zero.
By reciprocity, Vi (V at b due to I,) is zero. The terminals b are arbi-
trary; so the current element along the conductor (at a) produces no V
between any two points in space; hence it produces no E. We can think
of I, as inducing currents on the conductor such that these currents pro-
duce a free-space field equal and opposite to the free-space field of I,.

3-9. Green’s Functions. Our reciprocity relationships are formulas
symmetrical in two field-source pairs. Mathematical statements of reci-
procity (symmetrical in two functions) are called Green’s theorems. The
difference between a Green’s theorem and a reciprocity theorem is that
no physical interpretation is given to the functions in the former.

The scalar Green’s theorem is based on the identity

V- V) = V% + VY- Vo

When this is integrated throughout a region and the divergence theorem
applied to the left-hand term, we obtain Green’s first identity

By 22 as - / / WV + VY - V) dr (3-43)

Interchanging ¢ and ¢ in this identity and subtracting the interchanged
equation from the original equation, we obtain Green’s second tdentity or
Green’s theorem

# (zp g—z - ¢ %) ds = / f WV2¢ — ¢VH) dr (3-44)

This is a statement of reciprocity for scalar fields ¥ and ¢.
The vector analogue to Green’s theorem is based on the identity

V-AXVXB) =VXA-VXB—-A-VXVXB

An integration of this throughout a region and an application of the
divergence theorem yields the vector analogue to Green’s first identity

#(Axva)-ds=//f(VxA~VXB—A-VXVXB)d1
(3-45)
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Fra. 3-20. Region to
which Green’s theorem is
applied.

We can interchange A and B and subtract the resulting equation from
the original equation. This gives the vector analogue to Green’s second
identity, or the vector Green’s theorem,

#(Axva—vaxA)-ds
=// B-VXVXA—A-VXVXB)dr (346)

Our reciprocity theorem [Eq. (3-35)], for a homogeneous medium, is
essentially Eq. (3-46) with A = E* and B = E*. For an inhomogeneou's
medium, still another vector Green’s theorem corresponds to our reci-
procity theorem (see Prob. 3-28).

Green’s theorems have been used extensively in the literature as
follows. Suppose we desire the field E at a point r’ in a region. Instead
of solving this problem directly, a point source is placed at r’, and its
field is called a Green’s function G. We then substitute E = A and
G = B in Eq. (3-46). This gives a formula for E at r’, as we shall dis-
cuss below. What we have done is solve the reciprocal problem (source
at the field point of the original problem) and then apply reciprocity.
The equivalence principle gives the solution more directly.

Let us summarize the various Green’s functions used in the literature.
Stratton chooses?

G:=cé (3-47)
e—jklx—x’l
O S 3-48
where ¢ =7 . ( )

and ¢ is a constant vector. A comparison of Eq. (3-47) with Eq. (2-117)
shows that G, is the vector potential of a current element Il = 4wc.
Hence, G, is a solution to Eq. (2-108), or

VXV X G’1 —_ szl = V(V . Gl) r # r’ (3-4:9)
Now suppose we wish to find E at r’ in a source-free region enclosed by S.

The source of G is placed at r’ and surrounded by an infinitesimal sp-here s,
as shown in Fig. 3-20. Equation (3-46) with A = E and B = G, is now

1], A. Stratton, “Electromagnetic Theory,” p. 464, McGraw-Hill Book Company,
Inc., New York, 1941,
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applied to the region enclosed by S and s. The result is

—4nc - E = #(Exva,—G,xvxE+Ev-Gl)-ds (3-50)
S

which is a formula for calculating E at r’ in terms of n X E,n X V X E,
and n-E on 8. Furthermore, it is required that E be continuous and
have continuous first derivatives on S. This is a severe restriction on
the usefulness of Eq. (3-50), although it can be amended to admit singular
E’s on S.

A choice of Green’s function which overcomes some of the disadvan-
tages of Eq. (3-50) is?

G: =V X co (3-51)

where ¢ is given by Eq. (348). This is evidently the magnetic field of a
current element /1 = 4rc. Hence, G, is a solution to

VXVXGz—k2G2=O r;ér, (3-52)

We now apply Eq. (3-46) with A = E and B = G to the region enclosed
by S and s in Fig. 3-20. The result is?

4qrc-v’xE=#(szVXE—EXVXGZ)-ds (3-53)
S

This is a formula for V' X E (hence for H) at r’ in terms of n X E and
n XV X EonS. Equation (3-53) does not require E to be continuous
on S, nor do we need to know n-E on 8. Thus, Eq. (3-53) is a sub-
stantial improvement over Eq. (3-50). In fact, Eq. (3-53) can be shown
to be identical to the formula obtained from the equivalence principle of
Fig. 3-9, applied to a homogeneous medium.

Another useful Green’s function is

G;=VXVXce (3-54)

where ¢ is given by Eq. (3-48). This is proportional to the electric field
of an electric current element; so G; also satisfies Eq. (3-52). An appli-
cation of Eq. (3-46) would yield a formula for E at r’, similar in form to
Eq. (3-53).

All of the G’s considered so far are “free-space’” Green’s funections,
that is, they are fields of sources radiating into unbounded space. We
can choose other G’s such that they satisfy boundary conditions on S.

1J. R. Mentzer, “Scattering and Diffraction of Radioc Waves,” p. 14, Pergamon
Press, New York, 1955.

2 The left-hand side of this equation is a function only of the primed coordinates.
Hence, a prime is placed on V’ to indicate operation on 1’ instead of r.
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For example, let

Gi=G:+ Gy (3-55)
such that G, satisfies Eq. (3-52) and
OXVXG=0 on S (3-56)

The physical interpretation of G, is that it is the magnetic field of a
current element I1 = 4xc radiating in the presence of a perfect electric
conductor over S. The G is the incident field, and the G4 is the scat-
tered field. Application of Eq. (3-46) with A = E and B = Gy results in
Eq. (3-53) with the last term zero, because of Eq. (3-56). Thus,

47rc-v'xE=9§5(G4xvxE)-ds (3-57)
S

which is a formula for v/ X E in terms of oly n X V X Eover S. The
same formula can be obtained from the equivalence principle of Fig. 3-11,
as it applies to a homogeneous region.

Similarly, defining a Gs such that

nXGs=0 onS (3-58)

we can obtain a formula

47rc-V’xE=—-S[j5(Exva5)-ds (3-59)
e - )

and so on. All these various formulas, and many more, can be directly
obtained from the equivalence principle. We have discussed the Green’s
function approach merely because it has been used extensively in the
literature.

3-10. Tensor Green’s Functions. We sl}all henceforth use the term
“Green’s function’’ to mean “field of a point source.” Suppose we have
a current element I1 at r’ and we wish to evaluate the field E at r. The
most general linear relationship between two vector quantities can be
represented by a tensor. Hence, the field E is related to the source Nl by

E =[]l (3-60)

where [I'] is called a tensor Green’s function. In rectangular components
and matrix notation, Eq. (3-60) becomes

E, Toe Doy To|{1ls
B | =T Tw Twl|l|ll (3-61)
Ez I‘zz .Fzy Fzz I lz

Thus, T is the ith component of E due to a unit j-directed electric cur-
rent element. The E might be the free-space field of I1, in which case
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[T'] would be the ‘“free-space Green’s function.” Alternatively, E might
be the field of Il radiating in the presence of some matter, and [T'] would
then be called the ‘“Green’s function subject to boundary conditions.”
Still other Green’s functions are those relating H to I1, those relating
E to Kl, and so on.

Our principal use of tensor Green’s funetions will be for concise mathe-
matical expression. For example, the equation

E = / / / [T]J d+ (3-62)

where [T'] is the free-space Green’s function defined by Eq. (3-60), repre-
sents the solution of Eq. (2-111), which is

E = —joul + .i v(V - A)

e

Equation (3-62) also represents the field of currents in the vicinity of a
material body if [I'] represents the appropriate Green’s function, and so
on. In other words, Eq. (3-62) is symbolic of the solution, regardless of
whether or not we can find [T].

Even though we shall not use tensor Green’s functions to find explicit
solutions, it should prove instructive to find an explicit [T'). Let us take
[T] to be the free-space Green’s function defined by Eq. (3-60). If Il is
z-directed,

Ile—ikle—rl
Az _—————
drlr — 1|
. 1 924,
and -Ea: = - z
Joud +]we dx?
1 924
E, = — z
Y jwe 9y 0z
_ Lo,
? 7 jwe 0z 0%

Comparing this with Eq. (3-61) for I, = I, = 0, we see that

, 1 92
I‘zz*( le-t‘i'j—ma—xg)kb

T = i. az‘l’
YT jwe Ay 0z
1 o%
Iy = —
Jwe 8z 0z
—ikls—r']
Wh = e_].__ _
ere ¢ TE =7 (3-64)
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The other elements of [I] are found by taking Il to be y-directed and
then z-directed. From symmetry considerations, the other I';;/’swill differ
only by a cyclic interchange of (z,y,z). The result is therefore

1 9
T = <—J o +.7we azz)'p
1 o

]we EEY, ikl

(3-65)
i = t#j

with ¢ given by Eq. (3-64). The reciprocity theorem is reflected in the
symmetry

Ty(rx’) = Tu(r',r) (3-66)

which can be proved for I”s subject to boundary conditions as well.

3-11. Integral Equations. An integral equation is one for which the
unknown quantity appears in an integrand. We already have the con-
cepts needed to construct integral equations. For example, the potential
integral of Eq. (2-118) is essentially an integral equation when J is
unknown. Most problems can be formulated either in terms of integral
equations or in terms of differential equations. When ezact solutions
are desired, the differential equation approach is usually the simpler one.
An important use of integral equations is to obtain approzimate solutions.
There is good reason for this. Integration is a summation process, and
it is not necessary that each element of the summation be correct. Errors
in some elements of the summation may be compensated for by errors in
other elements. Also, all elements do not contribute equally to a sum-
mation. It is much more important that the elements contributing most
to the summation be correct than that the elements of minor contribu-
tion be correct. This is why we were able to obtain useful results by
assuming the current on the linear antenna of Fig. 2-23, by assuming the
field of each element of magnetic current in Fig. 3-17b, and so on.

To illustrate the formulation of an integral equation, consider the
induction theorem of Fig. 3-16. Let [I'(r,r’)] be the tensor relating the
E field at r due to an element of M at r’ radiating in the presence of the
conductor over S. In equation form, this is

dE(r) = [[(r,r')] dM(r)

The total scattered field for the problem is then the summation
E@) = b M) ML) ds’
S

where M, is given by Eq. (3-27). When r is on 8, Eq. (3-26) must
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also be true; hence

n X E() =0 X fpPEr)ER) xds' ron§  (367)
S

The incident field Ef is assumed to be known; so Eq. (3-67) is an integral
equation for determining [I']. As we mentioned earlier, an exact solution
to Eq. (3-67) would be difficult even for the simplest specialization.

Problems involving a region homogeneous except for small ““islands”’
of matter are commonly encountered. Examples of such problems are
the linear antenna of Fig. 2-23 and the obstacle of Fig. 3-15a. To illus-
trate the general concepts involved, suppose we have an inhomogeneous
region, possibly conta.mmg sources J¢ and Mf. Within this region, the
field satisfies

~V X E =%H + M: VXH=¢E+]J

where £ and ¢ are functions of position. We can define normal values of
impedivity and admittivity, £, and ¢,, which may be any convenient con-
stants (usually the most common 2 and 7 in the region). We can now
rewrite the field equations as

—VXE=2H+M  VXH=¢E4+]
where the g¢ffective currents are

= (2 —2)H + M
J=@—-9)E+J

These effective currents can then be treated as source currents in a homo-
geneous region. Since J and M are functions of E and H, a solution in
terms of them will lead to an integral equation. However, if 4 = 2, and
9 = 91 except in small subregions, we can assume J and M in the sub-
regions and obtain approximate expressions for E and H elsewhere.
(Recall the linear antenna problem, where we assumed I on the antenna
wire.) Note that, when the normal 2 and § are taken as the free-space
parameters, Eqgs. (3-68) reduce to

(3-68)

M = jo(p — w)H + M
J = jw(¢ — &)E + ¢E + J¢

The effective currents in excess of the true sources (M and J*) are now
just those due to the motion of atomic particles in vacuum.

Let us reconsider the problem of scattering by an obstacle in the light
of the above concepts. Given the problem of Fig. 3- 15a, we can consider
the total field to be the potential integral solution of Eqgs. (3-4) and (3-5),
with J and M given by Eqgs. (3-69). The incident field is that produced

(3-69)
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by JF and M outside of the obstacle, and the scattered field is that pro-
duced by ( -

M = jo(@ — o : 3270

J = jo(é — «)E + oE (870)

throughout the obstacle. To be explicit, outside of the obstacle

E'=—vxF+.ivxva (3-71)

Je—-:klr—r’l

where =4 // = r,l
obstacle (3_72)

Me—zklr—r’| ,
T ir _/ / =17 dr

obstacle

with J and M given by Eq. (3-70). If we can guess J and M with
reasonable accuracy, then Eqgs. (3-71) and (3-72) will give us an approxi-
mate solution. For a nonmagnetic obstacle, M, and consequently F,
will be zero. For a good conductor, J reduces to ¢E, and this eurrent
resides primarily on the surface of the obstacle. If we assume the
obstacle perfectly conducting, then J becomes a true surface current.
The solution in this case reduces to
—kIr—rI
R vxvxc}ﬁg]’e’ R (3-73)

T 4mjweo

If we specialize this equation to S, then Eq. (3-26) must be met, and we
have an ihtegral equation for determining J,.

An approximation to J,, known as the physical optics approzimation,
is as follows. Let Fig. 3-2la represent a perfectly conducting obstacle
illuminated by some source. In terms of the total field, the surface cur-

rent on the conductor is given by
Jo=nXxH
When the obstacle is large, we assume that the total field is negligible in

Ei + Es Es(approx.) - /n
~
Incndent wave 3
Js=2nX H;l
[— ‘/
®

Fia. 3-21. The physical optics a.pprox1mat10n. (@) Original problem; (b) the
approximation. :
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the “shadow’ region. Furthermore, if the obstacle is smooth and gently

curved, each element of surface behaves similarly to an element of a

ground plane. According to image theory, the tangential components

"~ of H at a ground plane are just twice those from the same source in

unbounded space. We therefore approximate the current on the obstacle
by

J. = 2n X H' over S’ (3-74)

where §’ is the illuminated portion of S. The physical optics approxi-
mation to the scattered field is therefore

i jklr~z’|
B~ vxvx [[@XEPT0 G
2mjweg r — | .

4

This approximation is illustrated by Fig. 3-21b.

As an explicit application of the physical optics approximation, again
consider the large conducting plate of Fig. 3-17a. The incident E is
given by Eq. (3-28); hence

E,

Hlli = = p—ik2

The physical optics approximation to the obstacle current [Eq. (3-74)] is
therefore

_ 2B
7

Ja

Each element of this radiates as a current element in free space, as
analyzed in Sec. 2-9. The contribution to the radiation field in the
back-scatter direction from each J, ds is ‘

—jkEsds ¢
2nr

—~7ikr

dE; =

The total distant back-scattered field is therefore

Ezs = // dEza = ]k2E7r(;‘A ekt (3_76)

plate

which is identical to Eq. (8-29), the approximation obtained from the
induction theorem. The physical optics approximation to the echo area
of the plate is therefore that of Eq. (3-31). This equality of the two
approximations to back scattering [Eqs. (3-29) and (3-76)] is no coinci-
dence. It can be shown that the two approaches always give the same
back scattering but do not give the same scattering in other directions.!

!R. F. Harrington, On Scattering by Large Conducting Bodies, IRE Trans.,
vol. AP-7, no. 2, pp. 150-153, April, 1959.
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3-12. Construction of Solutions. So far, we have explicitly considered
only two types of solutions to the field equations, namely, uniform plane
waves and the potential integrals. In the next three chapters, we shall
learn how to construct many other solutions. A general method of
obtaining these solutions is considered here.

In a homogeneous source-free region, the field satisfies

—VXE=#H V-H=0 -
VxH=¢E V-E=0 8-77)

In view of the divergenceless character of E and H, we can express the
field in terms of a magnetic vector potential A or in terms of an electric
vector potential F. More important, we can employ superposition and
express part of the field in terms of A and part in terms of F.. The A
must be a solution to Eq. (2-108) with J = 0, and the F a solution to the
dual equation. The general equations for vector potentials are therefore

VXVXA-—ELEWA=—§vde ’
vXVXF—F = —3ve/ (3-78)

where &* and & are arbitrary scalars. The electromagnetic field in terms
of A and F is given by Egs. (3-4) with J = M = 0, or

E=—VXF+1,VXVXA
Y (3-79).
H=VXA+—éVXVXF

Equations (3-78) and (3-79) are the general form for fields and potentials

in homogeneous source-free regions. .
-There is a great deal of arbitrariness in the choice of vector potentials.
For instance, we can choose the arbitrary ®’s according to

VA= —gd° vV.-F = —2% (3-80)
This reduces Egs. (3-78) to
VA + kA =0 (3-81)
VZE 4 k?F =0

Solutions to these equations are called wave potentials. Note that the
rectangular components of the wave potentials satisfy the scalar wave
equation, or Helmholtz equation,

vy + k% =0 (3-82)

Also, when Egs. (3-80) are satisfied, we can alternatively write Egs.
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(3-79) as
E = —VxF—éA+%V(V-A)

! (3-83)
H=VXA—gF+3V( F)

We have yet to decide how to divide the field between A and F. Asa
word of caution, do not make the mistake of thinking of A as due to J
and F as due to M. This happened to be our choice for the potential
integral solution, where we considered the sources everywhere. We are
now concerned with regions of finite extent, and we can represent a field
in terms of A or F or both, regardless of its actual source.

v Let us now consider some particular choices of potentials. If we take

= 0 and

A=uy (3-84)
then E = —2A + % V(v-A) H=VxA (3-85)
This can be expanded in rectangular coordinates as
_ 1y _ 9
* §0zdz H. = 3y
_ 1 9% i
E, = 73y 9 H, = — i (3-86)
=& tr)y H =0
g\ T

A field with no H, is called transverse magnetic to z (TM). We shall find it

possible to choose ¢ sufficiently general to express an arbitrary TM field

in a homogeneous source-free region according to the above formulas.
In the dual sense, if we choose A = 0 and

F =uy (3-87)
then E=—VXF — —4F + %v(v . F) (3-88)
Expanded in rectangular coordinates, this is
N 1 0%
Ez = - = = 2o a.
Yy H 29z oz
_ % _1 %
B =5 Hy =3 dy 9z (3-89)
B =0 H=1(Z 1)y
A

A ﬁgld with no E, is called transverse electric to z (TE). We shall find it
possible to choose ¥ sufficiently general to express any TE field in a
homogeneous source-free region according to the above formulas.
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Now suppose we have a field neither TE nor TM. We can determine

a y according to

_az_lpa 2.1,6 — 4}

922 + k ‘P - y-:Ez
which will generate a field TM to z according to Egs. (3-86). This TM
field will have the same E, as does the original field; so the difference
between the two will be a TE field. We can therefore determine this
difference field according to Eqgs. (3-89), where the ¢ is found from

N | peyt =
az2+k¢l—éH=

Thus, an arbitrary field in a homogeneous source-free region can be expressed
as the sum of a TM field and o TE field. Explicit expressions for the field
would be superposition of Eqs. (3-86) and (3-89), with superscripts a and
f added to the ¢’s to distinguish between them. Since the z direction is
arbitrary, we can express this independent of the coordinate system by

defining
A=cy F=cy/ (3-90)

where ¢ is a constant vector. The field is then given by Egs. (3-79),
which become
E=—VX @) +=9XVX ()
! (3-91)
H=V X (cy*) +§v X V X (cy’)

where the ¥’s are solutions to Eq. (3-82). We must therefore study solu-
tions to the scalar Helmholtz equation to learn how to pick the ¥'s.
If the region is not source-free but is still homogeneous, our starting
equations are
-VXE=H+ M
VXH=¢E+]J

instead of Eqgs. (3-77). General solutions to Egs. (3-92) can be con-
structed as the sum of any possible solution, called a particular solution,
plus a solution to the source-free equations, called a complementary solu-
tion. We already have a particular solution, namely, the potential inte-
gral solution of Sec. 3-2. Therefore, solutions in a homogeneous region
containing sources are given by

E=E, +E, H=H, 4+ H, (3-93)
where the particular solution (ps) is formed according to Egs. (3-4) and

(3-5), and the complementary solution (cs) is constructed according to
Egs. (3-91). We can think of the particular solution as the field due to

(3-92)
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sources inside the region and the complementary solution as the field
due to sources outside the region.

3-13. The Radiation Field. It is easier to evaluate the radiation
(distant) field from sources of finite extent than to evaluate the near field.
(See, for example, Secs. 2-9 and 2-10.) In this section, we shall formalize
the procedure for specializing solutions to the radiation zone.

Consider a distribution of currents in the vicinity of the coordinate
origin, immersed in a homogeneous region of infinite extent. The com-
plete solution to the problem is represented by Egs. (3-4) and (3-5). If
we specialize to the radiation zone (r > r.,.), as suggested by Fig. 3-22,
we have

|t — 1| =7 — 1 cos ¢ -(3-94)

where £ is the angle between r and r’.  Furthermore, the second term of
Eq. (3-94) can be neglected in the ‘“magnitude factors,” |r — r'|~!, of
Egs. (3-5). It cannot, however, be neglected in the ‘‘phase factors,”
exp (—jkir — 1'|), unless r.,,, < A. Thus, Egs. (3-5) reduce to

e~k .
2= [[] sy mcar
e ikr N i ,
F = y M (") e won & dr

in the radiation zone. Note that we now have the r dependence shown
explicitly. Many of-the operations of Eqs. (3-4) can therefore be
performed.

Rather than blindly expanding Eqs. (3-4), let us draw upon some
previous conclusions. In Sec. 2-9 it was shown that the distant field of
an electric current element was essentially outward-traveling plane waves.
The same is true of a magnetic current element, by duality. Hence, the

(3-95)

z To distant
field point

r—r

Fra. 3-22. Geometry for
evaluating the radiation
field.
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Z
A~
\\\\
r\
F1c. 3-23. Conventional :
coordinate orientation. 0 I
L2
f >y
x ¢ Pt 7
X ———————
radiation zone must be characterized by
Ey =nH, Ey = —qH, (3-96

since it is a superposition of the fields from many current elements. We
can evaluate the partial H field due to J according to H’ = V X A (ses
Sec. 3-2). Retaining only the dominant terms (r—! variation), we hawve

H) = (VX A)s = jkA,
H, = (V X A)y = —jkAe

with E’ given by Eqs. (3-96). Similarly, for the partial E field due to M
we have, in the radiation zone,

By = ~(V X F)y = —jkF,
Ef = —(Vv X F), = jkFs

with H” given by Egs. (3-96). The total field is the sum of these partia
fields, or
Ey = —jouAy — jkF, o7
B, = —joud, + jkFa (3-97

in the radiation zone, with H given by Egs. (3-96). Thus, no differenti
ation of the vector potentials is necessary to obtain the radiation field.
Also, for future reference, let us determine 7 cos ¢ as a function of the
source coordinates. The three coordinate systems of primary interes
are the rectangular, cylindrical, and spherical, as illustrated by Fig. 3-23
For the conventional orientation shown, we have the transformations

x = rsin 0 cos ¢ Z = pcos ¢
y = rsin 6 sin ¢ y = psin ¢ (3-98
2z = rcosd 2=z

To obtain ' cos £, we form

rreosE=r-t =3z’ + yy + 22 (3-99



134 TIME-HARMONIC ELECTROMAGNETIC FIELDS
Substituting for z, y, z from the first set of Egs. (3-98), we obtain
r' cos £ = (2’ cos ¢ + ¥’ sin ¢) sin 6 + 2’ cos 8 (3-100)

which is the desired form when rectangular coordinates are chosen for
the source. Substituting into Eq. (3-100) for z/, 3/, 2’ from the second
set of Egs. (3-98), we obtain

r'cos £ = p'sinGcos (¢ — ¢') + 2" cos @ (3-101)

which is the desired form when cylindrical coordinates are chosen for the
source. Finally, substituting into Eq. (3-100) for 2, ¥/, 2’ from the first
set of Eqgs. (3-98), we have

r’ cos £ = r'[cos 0 cos §' - sin 0 sin 8’ cos (¢ — ¢')] (3-102)

which is the desired form when spherical coordinates are chosen for the

source.

PROBLEMS
3-1. Show that a current sheet
J = uzJO
over the z = 0 plane produces the outward-traveling plane waves
- ”TJ” ek 23>0

—"T‘]“ei’" 2 <0

in an infinite homogeneous medium.
8-2. Instead of the electric current sheet, suppose that the magnetic current sheet
Ty

M, = u,M, sin by

exists over the cross section z = 0 in the waveguide of Fig. 3-2. Show that this
magnetic current produces a field
M 0o . wY
'—2— Sin 'F €
M

?"sinsz—!eiﬂ' z2 <0

—iBz z>0
E;, =

3-3. Suppose now that the two current sheets

g A ™
].—u,zosmb
M.=u,,Asin%y
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exist simultaneously over the cross section z = 0 of Fig. 3-2. Show that thesv pro-
duce a field
—A sin 7—%’ e~ ibz z2>0

0 z2 <0

E. =

This source is a “directional coupler.”
3-4. In Tig. 3-2, suppose that a “shorting plate’ (conductor) is placed over the

cross section z = —d. Show that the current sheet of Eq. (3-2) now produces a field
_ JoZa (1 — e~i282) sin 7Y ¢-ife z>0
B, = 2 b
A sin”b—ysin Bd+2)] —-d<z<0

Note that when d is an odd number of guide quarter-wavelengths, E. for z > 0 is
twice that for the current sheet alone [see Eq. (3-3)], but when d is an integral number
of guide half-wavelengths, no E, exists for z > 0.

8-6. The TE and TM modes of a parallel-plate waveguide (Prob. 2-28) are almost
dual to each other. Show that the field dual to the TE, mode of Prob. 2-28 is the
TM, mode for the parallel-plate guide having conductors over the planes y = b/2
and y = —b/2. Show that the field dual to the TM, mode of Prob. 2-28 is the TE,
mode of this new waveguide.

8-6. Obtain the field of an infinitesimal loop of magnetic current having z-directed
moment KS. Show that this produces the same field as the electric current element
of Fig. 2-21 if

Il = —jweKS
3-7. Figure 3-24a shows the cross section of & “twin-slot’’ transmission line. Show

that the field distribution is dual to that of the collinear plate line of Fig. 3-24b. By
integrating along the contours shown in Fig. 3-24¢, determine the line voltages and

E -
% H Cz’ { _ CZ
7 <
D H E c/ { C,
_L \
\\
E H
(@) ® ©

F1c. 3-24. Figures for Prob. 3-7. (a) Twin-slot line; (b) collinear plate line; (c) inte-
gration contours.
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currents of both the slot line and the plate line. Show that

(Zmot s =
0/slot line = 4(Z0)plnte Tioe
From Table 2-3, it follows that

(Zo)stot tine = D>»w

.
4 log (4D /w)
The two transmission lines are said to be complementary structures (see Babinet’s
principle, Sec. 7-12).

3-8. Show that the field

JoZs sin = ¢ifs z2>0
2 b
B:=\12o .«
°2°Sin by g 1= z2<0

is also a mathematical solution to the problem of Fig. 3-2 with J, given by Eq. (3-2).
What do our uniqueness theorems say about this second solution? What can we say
about it on physical grounds? Give a couple of other possible solutions to the
problem, and interpret them physically.

3-9. Show that the current sheets

no_. (i 1\ .
—_— — p—ika [ L _—
Ja up e (a+ )smo

Il . fjou .
= — L g—ika
M, up g€ (a +a2+1 as)sma

over the sphere 7 = ¢ produce the field of Egs. (2-113) » > a and zero field r < a.
3-10. If E is well-bechaved in a homogeneous region bounded by S, and if
$H = —V X E, show that the currents

J = —gE—%va X E

will support this and only this field among a class E, H having identical tangential
components of E on S. Show that the same E, but different H, can be obtained
within this class if magnetic sources K are allowed in addition to J.

8-11. Suppose there exists within the rectangular cavity of Fig. 2-19 a field

E. = E4sin ‘%y sinh vz

where y = ‘\/ (x/b)2 — k? and k is complex (lossy dielectric). Show that this field
can be supported by the source
M, = —u,Eysin -%y sinh e

at the wall z = ¢. Show that for a low-loss dielectric, M, almost vanishes at the
resonant frequency [Eq. (2-95)], that is, a small M, produces a large E.

3-12. Consider a z-directed current element Il a distance d in front of a ground
plane covering the y = 0 plane, as shown in Fig. 3-25. Show that the radiation field
is given by

By = _)‘Z_Il ¢~ gin @ sin (kd sin ¢ sin 6)
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and 7Hy = Eo. Find the power radiated and show that the radiation resistance
referred to I is

ywl? [ sin 2kd  cos 2kd | sin 2kd]

Be =313~ "2k ~ @ka)e T @ka)

For d < x/4, the maximum radiation is in the y direction. Show that

R 327312d3?
TR0 I5AS

and that the gain is 7.5 for d small, 4.15 for d = 2\ /4, -and approximately 6 for d large.

Z

Fie. 3-25. Current ele-
ment parallel to a ground
plane.

3-18. In Fig. 3-6a, suppose we have a small loop of electric current with z-directed
moment IS, instead of the current element. Show that the radiation field is given by

B, = J—”f"’TIS e~k gin (kd cos 6) sin 8

and nHg = —E,. Find the power radiated and show that the radiation resistance

referred to I is
ES\2[1 = cos2kd sin 2kd
& =2 (5) |5+ Gy~ @y )
erISkd

e~i¥" gin 26

For small d, Ey —— P

(lcSkd)
kd—.o 15

Thus, maximum radistion is at 8 = 45° for small d. The gain at small d is 15. For

large d, the maximum radiation lies close to the ground plane, and the gain is 6.
3-14. In Fig. 3-25, suppose we have a small loop of electric current with z-directed

moment I8, instead of the current element. Show that the radiation field is given by

k2l S
2mr

By = e~i* gin 6 cos (kd sin ¢ sin §)
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and nHy = —E,;. Show that the radiation resistance referred to I is

kS\2[2 |, sin 2kd , cos 2kd  sin 2kd
By = mn (T) [§ t 2k T @R (2kd)a]

The maximum radiation is along the ground plane, in the z direction. For small kd,
4wy IcS)2
R, kd—0 3 ( A
which is twice that for the isolated loop. For d = 0, the gain is 3; for d = A/4, it is
7.1; and for d — o, it is 6.

3-156. The monopole antenna consists of a straight wire perpendicular to a ground
plane, fed at the ground plane, as shown in Fig. 3-26. Show that the field is the same
as that from the dipole antenna (Fig. 2-23), fed at the center. Show that the gain
of the monopole is twice that of the corresponding dipole and that the radiation

resistance is one-half. For example, the radiation resistance of the A/4 monopole is
36.6 ohms.

FiG. 3-26. The monopole
Iz) antenna.

.

3-16. Censider an open-ended coaxial line (Fig. 3-14¢ without the ground plane)
of small radii ¢ and b. Treat the problem according to the equivalence principle
as applied to a surface just enclosing the coax. Assume n X H is essentially zero
over the entire surface and that tangential E is that of the transmission-line mode
over the open end. Show that to this approximation the radiated field is one-half
that of Eq. (3-20) and that the radiation conductance is one-half that of Eq. (3-23).

3-17. A slot antenna consists of a slot in a conducting ground plane, as shown in
Fig. 3-27. Tt is called a dipole slot antenna when fed by a voltage impressed across
the center of the slot. -The slot and ground plane can be viewed as a transmission
line, and the field in the slot will be essentially a harmonic function of kz. Assume

Ve . L
E, = - sin [k 3~ ]z|)]

in the slot, and obtain the magnetic current equivalent of the form of Fig. 3-13c.
For w small, show that this equivalent representation is the dual problem to the
dipole antenna of Sec. 2-10. Using duality, show that the radiation field is

L L
§V meitr €08 (k 3 €08 0) — cos (k 5) ~ { Ho y>0
nur sin 6 | —H y <0

Define the radiation conductance of this antenna as G, = P;/|Vanl|% and show that

(Gr)nlot dipole = ——4(R')“;;': dipole
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Fiq. 3-27. A slot antenna.

where R, is as plotted in Fig. 2-24. The input voltage V; is related to V,, by Vi = Vi
sin (kL/2); so.the input conductance is given by

G =—9
sin? (k é)
2
8-18. For the antenna of Fig. 3-27, assume E; in the slot the same as in Prob. 3-17,
and show that for arbitrary w

JVme™ % _ { Hy y>0
T f(0:¢) _Ho y < 0

L
sin (k g cos ¢ sin 9) ¢0s (Ic % cos 0) — cos (k 5)
where 16,9) = w . sin 6
k 5 cos ¢ sin 6
2
3-19. Figure 3-28 shows an\aperture antenna consisting of a rectangular waveguide
opening onto 2 ground plane. Assume that E: in the aperture is that of the TEn

Fra. 3-28. A rectangular
waveguide opening onto
a ground plane.
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waveguide mode, and show that the radiation field is

_ 2jbBuei sin (k g €08 ¢ sin 0) cos (k% cos 0)
nr cos ¢ [x3 — (kb cos 6)7]

Ho

3-20. Figure 3-29 represents a rectangular conduetihg plate of width a in the y
direction and b in the z direction. Let the incident plane wave be specified by

E.i —_ E’oeik(z cos Pyty sin ¢y)
Uze the induction theorem with the same approximation as was used in the problem

Y

F1e. 3-29. Scattering by
a rectangular plate.

T8
%o
a

1 :

of Fig. 8-17, and show that at large r the scattered field in the zy plane is

kEoabei*" sin [k(a/2)(sin ¢ + sin ¢o)]
E:' =~ R
2 k@/2)(m ¢ Ten gy O ®

Show that the echo area is

A, ~ 4o [ab cOoS ¢ siz% (ka sin ¢o)]’
Mea sin ¢

3-21. Repeat Prob. 3-20 for the orthogonal polarization, that is,
H‘|' = qujk(z cos Pg-ty oin Pg)
and show that at large r the scattered field in the zy plane is

He ~ JkH abe~i¥ sin [k(a/2)(sin ¢ -+ sin ¢o))
* 2rr k(a/2)(sin ¢ =+ sin ¢o)

COS ¢o

Show that the echo area is the same as obtained in Prob. 3-20.

8-22. Use rec_iprocity to evaluate the radiation field of the dipole antenna of Sec.
2-10.. To do this, place a 6-directed current element at large r, and apply Eq. (3-36),
obtaining Eq. (2-125).

3-_23. By applying voltage sources to the network of Fig. 3-18, show that the
admittance matrix [y] defined by

[11] - [yu 1/12] [Vl]
I, Y21 Y22 V,

satisfies the reciprocity relationship 12 = yu when Eq. (3-38) is valid.
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1)

Fra. 3-30. Differential

seattering. Obstacle

@

8-24. Let Fig. 3-30 represent two antennas in the presence of an obstacle. Let
V. be the voltage received at antenna 1 when a unit current source is applied at
antenna 2 and V' be the voltage received at antenna 2 when a unit current source is
applied at antenna 1. Let V,* and V.* be the corresponding voliages when the
obstacle is absent. Define the scattered voltages as

Vo=V, =V V=V, — Va'.
and show that V,* = V.

8-26. For the problem of Fig. 3-2, define the input impedance of the sheet of

current as :

{a,a)
7= -

where (a,a) is the self-reaction of the currents and I is the total current of the sheet.
Evaluate Z when the field is given by Eqs. (3-3).

8-26. Repeat Prob. 3-25 for the current sheet and field of Prob. 3-4.

8-27. In the vector Green’s theorem [Eq. (3-46)], let A = Es and B = E* in a
homogeneous isotropic region, and show that it reduces to Eq. (3-35).

8-28. Use the vector identity

V- (AX¢VXB)=¢VXA-VXB—-A-VX¢VXB
and derive the modified vector Green’s theorem

#(ﬁ(AXVXB—BXV X A)+ds
=[f (B-V XV XA —A-V X ¢V X B) dr

Let A = E+, B = E?, ¢ = £7! in an inhomogeneous region, and show that the above

theorem reduces to Eq. (3-35).
8-29. Derive the left-hand term of Eq. (3-50), that is, show

#(EXVXG: —GiXVXE+EV-Gy)-ds———4nc+E
e .

le—r’|—0
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3-30..Le.at G_‘ be the magnetic field of a z-directed current element situated y > 0
and radiating in the presence of a perfect electric conductor covering the y = 0 plane.
In other words, let ¢ = u; and S be the y = 0 plane. Show that

_ e~ ik e ikrs
Gi=V X u:( . bt s )
whero n=ve -2+ -y)>P+e-7r

r2=VeE -2+ +y)+ -2

3-31. _Special.ize the Gy of Prob. 3-30 to 71— w«, and apply Eq. (3-57) to the prob-
lem of Fig. 3-28. S!IOW that this gives the same answer as obtained in Prob. 3-19.
3-32. Apply duality to Eqs. (3-65), and evaluate the magnetic tensor Green’s
function [I'] defined by
H = [T]K1
in free space.
3-33. Evaluate the I';; for the free-space tensor Green’s function defined by

H = [r]]l

8-34. Repeat Prob_. 3-20 using the physical optics approximation, and show that
the answer for E.* differs from that of Prob. 3-20 by an interchange of ¢ and ¢.
Show that the echo area is identical to that of Prob. 3-20.

3-35. Repeat Prob: 3-21 using the physical optics approximation, and show that
the answer for H,* differs from that of Prob. 3-21 by an interchange of ¢ and ¢,.
Show that the echo ares is identical to that of Prob. 3-21.

'3-36. I:et ¥ = ¢7%vin Eqgs. (3-86), and evaluate the electromagnetic field. Classify
this field in as many ways as you can (wave-type, polarization, etc.).

?-37. I.,et ¥ = e¢~*=in Egs. (3-89), and evaluate the electromagnetic field. Classify
this field in as many ways as you can.

3-:?8. Let ¢ = u;, y* = ek, yf = je—i% and evaluate Eqgs. (3-91). Classify this
field in as many ways as you can.

(3 3;)-53)9 Derive Eqs. (3-97) by expanding Egs. (3-4) with A and F as given by Eqs.

CHAPTER 4

PLANE WAVE FUNCTIONS

4-1. The Wave Functions. The problems that we have considered so
far are of two types: (1) those reducible to sources in an unbounded
homogeneous region, and (2) those solvable by using one or more uni-
form plane waves. Equations (3-91) show us how to construct general
solutions to the field equations in homogeneous regions once we have
general solutions to the scalar Helmholtz equation. By a method called
separation of variables, general solutions to the Helmholtz equation can be
constructed in certain coordinate systems.! In this section, we use the
method of separation of variables to obtain solutions for the rectangular
coordinate system.

The Helmholtz equation in rectangular coordinates is

o O W | b, )
o T ayp T o TRV =0 (4-1)
The method of separation of variables seeks to find solutions of the form
¥ = X(@)Y[W)Z() (4-2)

that is, solutions which are the product of three functions of one coordi-
nate each. Substitution of Eq. (4-2) into Eq. (4-1), and division by ¥,

yields

12X | 1dY | 1dZ , .,
Xdd TV Tz =0 +3)

Each term can depend, at most, on only one coordinate. Since each
coordinate can be varied independently, Eq. (4-3) can sum to zero for
all coordinate values only if each term is independent of z, y, and =.

Thus, let

1&X _ 1eY _ o, 1d7_ _,,

X dz? Y dy? v Z dz? #
where k., k,, and k, are constants, that is, are independent of z, ¥, and 2.
(The choice of minus a constant squared is taken for later convenience.)

1Tt has been shown by Eisenhart (Ann. Math., vol. 35, p. 284, 1934) that the
Helmholtz equation is separable in 11 three-dimensional orthogonal coordinate systems.
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